Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 44(10): 5737-5745, 2023 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-37827789

RESUMO

To explore the effects of single or combined application of chlorine-and sulfur-based fertilizers on rice bioavailability of Cd in soils, pot experiments with reddish clayey soil (developed from quaternary red clay parent materials) under three exogenous Cd levels (0, 0.5, and 2.0 mg·kg-1) were conducted. Meanwhile, chlorine-based fertilizers (KCl, NH4Cl) and sulfur-based fertilizers[K2SO4, (NH4)2SO4] were added in different proportions. The soil pH, Cd morphology, and Cd accumulation in rice at different growth stages were analyzed. The results revealed that both chlorine-and sulfur-based fertilizers could acidify the soil; however, the effect of chlorine-based fertilizers was more significant. During the filling stage of rice, the soil pH value of the treatment of applying single chlorine-based fertilizer decreased by 0.28 on average compared with that of applying single sulfur-based fertilizer. At the maturity stage of rice, chlorine-based fertilizer could activate the residual Cd, whereas sulfur-based fertilizer passivated the acid-extracted Cd to its residual state. Compared with the single application of the same fertilizer, the combined application of chlorine-and sulfur-based fertilizers was more likely to promote the accumulation of Cd in rice plants. The highest Cd accumulation of brown rice was 0.21 mg·kg-1 (2.0 mg·kg-1 exogenous Cd level) in the 1:1 (mole ratios of Cl:S) treatment of chlorine-and sulfur-based fertilizers, which was 16.4% higher than that of single chlorine-based fertilizer and 113.3% higher than that of single sulfur-based fertilizer. Therefore, the combined application of chlorine-fertilizers and sulfur-based fertilizers will increase the concentration of Cd in brown rice. To ensure food quality and safety, it is more advisable to apply single sulfur-based fertilizer for rice planting.


Assuntos
Oryza , Poluentes do Solo , Solo , Fertilizantes/análise , Cloro/farmacologia , Cádmio/análise , Disponibilidade Biológica , Poluentes do Solo/análise , Halogênios , Argila , Enxofre
2.
Anal Chem ; 95(14): 5903-5910, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36999978

RESUMO

Single-stranded DNA (ssDNA) allows flexible and directional modifications for multiple biological applications, while being greatly limited by their poor stability, increased folding errors, and complicated sequence optimizations. This greatly challenges the design and optimization of ssDNA sequences to fold stable 3D structures for diversified bioapplications. Herein, the stable pentahedral ssDNA framework nanorobots (ssDNA nanorobots) were intelligently designed, assisted by examining dynamic folding of ssDNA in self-assemblies via all-atom molecular dynamics simulations. Assisted by two functional siRNAs (S1 and S2), two ssDNA strands were successfully assembled into ssDNA nanorobots, which include five functional modules (skeleton fixation, logical dual recognition of tumor cell membrane proteins, enzyme loading, dual-miRNA detection and synergy siRNA loading) for multiple applications. By both theoretical calculations and experiments, ssDNA nanorobots were demonstrated to be stable, flexible, highly utilized with low folding errors. Thereafter, ssDNA nanorobots were successfully applied to logical dual-recognition targeting, efficient and cancer-selective internalization, visual dual-detection of miRNAs, selective siRNA delivery and synergistic gene silencing. This work has provided a computational pathway for constructing flexible and multifunctional ssDNA frameworks, enlarging biological application of nucleic acid nanostructures.


Assuntos
MicroRNAs , Nanoestruturas , Neoplasias , Humanos , DNA de Cadeia Simples , Conformação de Ácido Nucleico , Nanoestruturas/química , RNA Interferente Pequeno , Neoplasias/diagnóstico , Neoplasias/terapia
3.
Phys Chem Chem Phys ; 24(29): 17641-17653, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35833743

RESUMO

Nucleoside triphosphate cyclohydrolase (UrcA) is a critical enzyme of the uracil catabolism pathway that catalyses the two-step hydrolysis of uridine triphosphate (UTP). Although the recently resolved X-ray structure of UrcA in complex with substrate analogue dUTP provided insights into the structural characteristics of the enzyme, the detailed catalytic mechanism, including how the reaction intermediate accomplishes conformational conversion in the active centre, remains unclear. In this study, extensive DFT calculations and MD simulations were performed to investigate the catalytic reaction process of UrcA. This study shows that the first hydrolytic reactions in UrcA follow a three-step mechanism, while the second hydrolytic reaction follows a two-step mechanism. Glu392 plays a critical role in deprotonating the lytic water in both hydrolytic reactions. The rate-limiting step of the first hydrolytic reaction lies in the cleavage of the uracil ring, in which an extraneous water molecule bridges the proton transfer from C6-OH to N1 to enable the reaction to go through a six-membered transition state with relatively low steric tension. In the second hydrolytic reaction, Glu392 abstracts protons from the lytic water and directly transfers them to the nitrogen atom of the cleaved C4-N3 bond so that the hydrolytic reaction is no longer rate-limited by the C-N bond cleavage step. MD simulations show that the reaction intermediate experiences spontaneous conformation overturn in the active site of UrcA under the assistance of the hydrogen bond interaction from Tyr307 to place its C4-N3 bond alongside the Zn2+ centre of the enzyme to trigger the second hydrolytic reaction.


Assuntos
Prótons , Água , Domínio Catalítico , Modelos Moleculares , Uracila , Uridina Trifosfato
4.
Eur J Med Chem ; 227: 113968, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34752954

RESUMO

ß-Amyloid (Aß) plaques and Tau tangles are cognitive impairment markers vital for diagnosing and preventing Alzheimer's disease (AD). To systematically explore the relationship between the number or position of nitrogen atoms and their optical properties and biological properties, five series of new N, O-coordinated organo-difluoroboron probes were introduced as binding scaffolds for Aß plaques and Tau tangles. These probes exhibited suitable optical properties for near-infrared (NIR) imaging. Probe 4PmNO-2 (4-((1E,3E)-4-(1,1-difluoro-1H-1λ4,9λ4-pyrimido[1,6-c][1,3,5,2]oxadiazaborinin-3-yl)buta-1,3-dien-1-yl)-N,N-dimethylaniline) displayed the excellent emission maximum (716 nm in PBS), a high quantum yield (61.4% in CH2Cl2), and a high affinity for synthetic Aß1-42 (Kd = 23.64 ± 1.08 nM) and Tau (K18) aggregates (Kd = 26.38 ± 1.29 nM), as well as for native Aß plaques and NFTs in the brain tissue from AD patients. 4PmNO-2, with significantly enhanced fluorescence (Aß1-42, 136 fold; Tau (K18), 96 fold) and the highest initial brain uptake (11.57% ID/g at 2 min) in normal ICR mice, was evaluated further. In vivo NIR fluorescent imaging studies in living Aß and Tau transgenic mice revealed that it could differentiate healthy and diseased animals. Further ex vivo fluorescent staining studies showed that 4PmNO-2 specifically bound to Aß plaques and Tau tangles in transgenic mice. In summary, the probe 4PmNO-2 may be a useful near-infrared fluorescence (NIRF) probe for AD biomarkers.


Assuntos
Peptídeos beta-Amiloides/análise , Benzamidas/química , Corantes Fluorescentes/química , Proteínas tau/análise , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Benzamidas/síntese química , Corantes Fluorescentes/síntese química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estrutura Molecular , Proteínas tau/metabolismo
5.
Inorg Chem ; 60(11): 7719-7731, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34004115

RESUMO

The non-heme iron-dependent enzyme SznF catalyzes a critical N-nitrosation step during the N-nitrosourea pharmacophore biosynthesis in streptozotocin. The intramolecular oxidative rearrangement process is known to proceed at the FeII-containing active site in the cupin domain of SznF, but its mechanism has not been elucidated to date. In this study, based on the density functional theory calculations, a unique mechanism was proposed for the N-nitrosation reaction catalyzed by SznF in which a four-electron oxidation process is accomplished through a series of complicated electron transferring between the iron center and substrate to bypass the high-valent FeIV═O species. In the catalytic reaction pathway, the O2 binds to the iron center and attacks on the substrate to form the peroxo bridge intermediate by obtaining two electrons from the substrate exclusively. Then, instead of cleaving the peroxo bridge, the Cε-Nω bond of the substrate is homolytically cleaved first to form a carbocation intermediate, which polarizes the peroxo bridge and promotes its heterolysis. After O-O bond cleavage, the following reaction steps proceed effortlessly so that the N-nitrosation is accomplished without NO exchange among reaction species.


Assuntos
Compostos de Nitrosoureia/metabolismo , Ferroproteínas não Heme/metabolismo , Biocatálise , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Conformação Molecular , Nitrosação , Compostos de Nitrosoureia/química , Ferroproteínas não Heme/química , Oxirredução , Streptomyces/enzimologia
6.
Inorg Chem ; 60(9): 6433-6445, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33861573

RESUMO

TxtC is an unusual bifunctional cytochrome P450 that is able to perform sequential aliphatic and aromatic hydroxylation of the diketopiperazine substrate thaxtomin D in two distinct sites to produce thaxtomin A. Though the X-ray structure of TxtC complexed with thaxtomin D revealed a binding mode for its aromatic hydroxylation, the preferential hydroxylation site is aliphatic C14. It is thus intriguing to unravel how TxtC accomplishes such two-step catalytic hydroxylation on distinct aliphatic and aromatic carbons and why the aliphatic site is preferred in the hydroxylation step. In this work, by employing molecular docking and molecular dynamics (MD) simulation, we revealed that thaxtomin D could adopt two different conformations in the TxtC active site, which were equal in energy with either the aromatic C20-H or aliphatic C14-H pointing toward the active Cpd I oxyferryl moiety. Further ONIOM calculations indicated that the energy barrier for the rate-limiting hydroxylation step on the aliphatic C14 site was 9.6 kcal/mol more favorable than that on the aromatic C20 site. The hydroxyl group on the monohydroxylated intermediate thaxtomin B C14 site formed hydrogen bonds with Ser280 and Thr385, which induced the l-Phe moiety to rotate around the Cß-Cγ bond of the 4-nitrotryptophan moiety. Thus, it adopted an energetically favorable conformation with aromatic C20 adjacent to the oxyferryl moiety. In addition, the hydroxyl group induced solvent water molecules to enter the active site, which propelled thaxtomin B toward the heme plane and resulted in heme distortion. Based on this geometrical layout, the rate-limiting aromatic hydroxylation energy barrier decreased to 15.4 kcal/mol, which was comparable to that of the thaxtomin D aliphatic hydroxylation process. Our calculations indicated that heme distortion lowered the energy level of the lowest Cpd I α-vacant orbital, which promoted electron transfer in the rate-limiting thaxtomin B aromatic hydroxylation step in TxtC.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Indóis/metabolismo , Piperazinas/metabolismo , Sistema Enzimático do Citocromo P-450/química , Hidroxilação , Indóis/química , Modelos Moleculares , Conformação Molecular , Piperazinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...